
Dynamic `1 Reconstruction

Justin Romberg, Georgia Tech ECE
NMI, IISc, Bangalore, India
February 22, 2015

Goal: a dynamical framework for sparse recovery

Given y and Φ, solve

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

Goal: a dynamical framework for sparse recovery

We want to move from:

Given y and Φ, solve

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

to

y(t)

8
>>>><
>>>>:

9
>>>>>>=
>>>>>>;

x̂(t)

�(t)

min `1

Agenda

We will look at dynamical reconstruction in two different contexts:

Fast updating of solutions of `1 optimization programs

M. Salman Asif

Systems of nonlinear differential equations that solve `1 (and related)
optimization programs, implemented as continuous-time neural nets

Aurèle Balavoine Chris Rozell

Classical: Recursive least-squares

System model:

y = Φx

Φ has full column rank

x is arbitrary

Motivation: dynamic updating in LS

y = ©x
© xy

• System model:

minimize k©x¡ yk2 ! x0 = (©
T©)¡1©Ty

• LS estimate

  is full rank

 x is arbitrary

=

• Updates for a time-varying signal with the same 
mainly incurs a one-time cost of factorization.

11

Least-squares estimate:

min ‖y −Φx‖22 =⇒ x̂ = (ΦTΦ)−1ΦTy

Classical: Recursive least-squares

Sequential measurement:

[
y
w

]
=

[
Φ

φT

]
x

Recursive updates

• Sequential measurements:

w

© xy

·
y
w

¸
=

·
©
Á

¸
x

Á

=

• Recursive LS

x1 = (©
T©+ ÁTÁ)¡1(©Ty + ÁTw)

= x0 +K1(w¡ Áx0)
K1 = (©

T©)¡1ÁT (1+Á(©T©)¡1ÁT)

Rank one update

12

Compute new estimate using rank-1 update:

x̂1 = (ΦTΦ + φφT)−1(ΦTy + φ · w)

= x̂0 +K1(w − φTx0)

where
K1 = (ΦTΦ)−1φ(1 + φT(ΦTΦ)−1φ)−1

With the previous inverse in hand, the update has the cost of a
few matrix-vector multiplies

Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

yt = Φtxt + et

xt+1 = F txt + dt



I 0 0 0 · · ·
Φ1 0 0 0 · · ·
−F 1 I 0 0 · · ·

0 Φ2 0 0 · · ·
0 −F 2 I 0 · · ·
0 0 Φ3 0 · · ·
...

...
...

. . .
...







x1

x2

x3
...


 =




F 0x0

y1

0
y2

0
y3
...




As time marches on, we add both rows and columns.

Least-squares problem:

min
x1,x2,...

∑

t

(
σt‖Φtxt − yt‖22 + λt‖xt − F t−1xt−1‖22

)

Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

yt = Φtxt + et

xt+1 = F txt + dt

Least-squares problem:

min
x1,x2,...

∑

t

(
σt‖Φtxt − yt‖22 + λt‖xt − F t−1xt−1‖22

)

Again, we can use low-rank updating to solve this recursively:

vk = F kx̂

Kk+1 = (F kP kF
T
k + I)ΦT

k+1(Φk+1(F kP kF
T
k + I)ΦT

k+1 + I)−1

x̂k+1|k+1 = vk +Kk+1(yk+1 −Φk+1vk)

P k+1 = (I−Kk+1Φk+1)(F kP kF
T
k + I)

Optimality conditions for BPDN

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

Conditions for x∗ (supported on Γ∗) to be a solution:

φT
γ (Φx∗ − y) = −W [γ, γ]z[γ] γ ∈ Γ∗

|φT
γ (Φx∗ − y)| ≤W [γ, γ] γ ∈ Γ∗c

where z[γ] = sign(x[γ])

Derived simply by computing the subgradient of the functional above

Example: time-varying sparse signal

Initial measurements. Observe

y1 = Φx1 + e1

Initial reconstruction. Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y1‖22

A new set of measurements arrives:

y2 = Φx2 + e2

Reconstruct again using `1-min:

min
x

λ‖x‖1 +
1

2
‖Φx− y2‖22

We can gradually move from the first solution to the second solution
using homotopy

min λ‖x‖1 +
1

2
‖Φx− (1− ε)y1 − εy2‖22

Take ε from 0→ 1

Example: time-varying sparse signal

Initial measurements. Observe

y1 = Φx1 + e1

Initial reconstruction. Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y1‖22

A new set of measurements arrives:

y2 = Φx2 + e2

Reconstruct again using `1-min:

min
x

λ‖x‖1 +
1

2
‖Φx− y2‖22

We can gradually move from the first solution to the second solution
using homotopy

min λ‖x‖1 +
1

2
‖Φx− (1− ε)y1 − εy2‖22

Take ε from 0→ 1

Example: time-varying sparse signal

Initial measurements. Observe

y1 = Φx1 + e1

Initial reconstruction. Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y1‖22

A new set of measurements arrives:

y2 = Φx2 + e2

Reconstruct again using `1-min:

min
x

λ‖x‖1 +
1

2
‖Φx− y2‖22

We can gradually move from the first solution to the second solution
using homotopy

min λ‖x‖1 +
1

2
‖Φx− (1− ε)y1 − εy2‖22

Take ε from 0→ 1

Example: time-varying sparse signal

min λ‖x‖1 +
1

2
‖Φx− (1− ε)yold − εynew‖22, take ε from 0→ 1

Path from old solution to new solution is piecewise linear

Optimality conditions for fixed ε:

ΦT
Γ (Φx− (1− ε)yold − εynew) = −λ signxΓ

‖ΦT
Γc(Φx− (1− ε)yold − εynew)‖∞ < λ

Γ = active support

Update direction:

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ

Path from old solution to new

Γ = support of current solution.
Move in this direction

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ

until support changes, or one of these constraints is violated:
∣∣φT

γ (Φ(x+ ε∂x)− (1− ε)yold − εynew)
∣∣ < λ for all γ ∈ Γc

Time-varying signals

y1 =©x1+ e1• System model:

minimize ¿kxk1 +
1

2
k©x¡ y2k22• New `1 problem:

17

x1! x2) y1! y2• Signal varies:
“Sparse innovations”

minimize ¿kxk1 +
1

2
k©x¡ y1k22• `1 problem:

minimize ¿kxk1 +
1

2
k©x¡ (1¡ ²)y1 ¡ ²y2k22

Homotopy parameter: 0 ! 1

bx1

bx2
• Path from old solution to new

solution is piecewise linear and
it is parameterized by ²: 0 ! 1

Blocks Pcw. poly

House

20

Sparse innovations

Numerical experiments: time-varying sparse signals
!"#$%&'"()*+,-$%'-!"#$%&'"()*+,-$%'-

!"#$"%&#$#'()!"*$*+%&#$#,*)!-'$+%&#$#,")!*($*%&#$#,,)./012&134521

!(($6"%&#$*-)!*($#-% #$*,*)!,-#$*%&,$#"()!,'$6'%&#$,-,)758$&7/39$

!-'$-%&#$,"()!,:%&#$,'')!:($6%&#$+"#)!*$:%&#$#*6);3/5<1

!,+6$(-%&#$,::)!,#+$-%&#$,6)!*'-%&#$"*+)!*'$:*% #$,'*)

=&>&,#*+
?&>&-,*
@&>&AB-%&<&C&@B*#
DE3021&>&FBG ,

H7IJKL&
!M7N/OKPK%&I7Q)

R7LSG;;
!M7N/OKPK% I7Q)

TKLLU&
V/A/P/W9

!M7N/OKPK%&I7Q)

X9MEA45YZ
!M7N/OKPK%&I7Q)

L4[ME3&P9W2

! ! """#!#! $!!

M7N/OKPK\ N/0[V39 PV2 E][$ M/$ /^ AEPN4_]25P/N WN/O05P1 84PV # EMO #!
I7Q\ E]2NE[2 5W0P4A2 P/ 1/3]2

[Asif and R. 2009]

Other updates

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

W = weights (diagonal, positive)

Using similar ideas, we can dynamically update the solution when

the underlying signal changes slightly,

we add/remove measurements,

the weights changes,

But none of these are really “predict and update” ...

A general, flexible homotopy framework

We want to solve

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

Initial guess/prediction: v

Solve

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22 + (1− ε)uTx

for ε : 0→ 1.

Taking
u = −Wz −ΦT(Φv − y)

for some z ∈ ∂(‖v‖1) makes v optimal for ε = 0

Moving from the warm-start to the solution

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22 + (1− ε)uTx

The optimality conditions are

ΦT
Γ (Φx− y) + (1− ε)u = −W signxΓ∣∣φT
γ (Φx− y) + (1− ε)u

∣∣ ≤W [γ, γ]

We move in direction

∂x =

{
uΓ on Γ

0 on Γc

until a component shrinks to zero or a constraint is violated, yielding new Γ

Streaming sparse recovery

Observations: yt = Φtxt + et

Representation: x[n] =
∑

p,k

αp,kψp,k[n]

Sparse recovery: streaming system

• Signal observations:   

• Sparse representation:   

34

LOT
coefficients

LOT representation basesSignalLOT
windows

ac
tiv

e
in

te
rv

al

Measurement matrices SignalMeasurements Error
ac

tiv
e

in
te

rv
al

Streaming sparse recovery

Iteratively reconstruct the signal over a sliding (active) interval,
form u from your prediction, then take ε : 0→ 1 in

min
α
‖Wα‖1 +

1

2
‖Φ̄Ψ̃α− ỹ‖22 + (1− ε)uTα

where Ψ̃, ỹ account for edge effects

Sparse recovery: streaming system

• Iteratively estimate the signal over a sliding (active) interval:

37

Overlapping system matrix Sparse
vector

Error

minimize kW®k1 +
1

2
k¹©~ª®¡ ~yk22

minimize kW®k1 +
1

2
k¹©~ª®¡ ~yk22 + (1¡ ²)uT®

Desired

Homotopy

Divide the system into two parts

Streaming signal recovery: Simulation
Streaming signal recovery - Results

40

(Top-left) Mishmash signal (zoomed in for first 2560 samples.
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients

Streaming signal recovery: SimulationStreaming signal recovery - Results

41

(left) SER at different R from ±1 random measurements in 35 db noise
(middle) Count for matrix-vector multiplications
(right) Matlab execution time

Streaming signal recovery: Dynamic signal

Observation/evolution model:

yt = Φtxt + et

xt+1 = F txt + dt

We solve

min
α

∑

t

‖W tαt‖1 +
1

2
‖ΦtΨtαt − yt‖22 +

1

2
‖F t−1Ψt−1αt−1 −Ψtαt‖22

(formulation similar to Vaswani 08, Carmi et al 09, Angelosante et al 09, Zainel at al 10, Charles et al 11)

using

min
α
‖Wα‖1 +

1

2
‖Φ̄Ψ̃α− ỹ‖22 +

1

2
‖F̄ Ψ̃α− q̃‖22 + (1− ε)uTα

Dynamic signal: SimulationDynamic signal recovery - Results

46

(Top-left) Piece-Regular signal (shifted copies) in image
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) Reconstructed signal at R=4.
(Bottom-right) Comparison of SER for the L1-regularized and the L2-regularized
problems

Dynamic signal: Simulation
Dynamic signal recovery - Results

47

(left) SER at different R from ±1 random measurements in 35 db noise
(middle) Count for matrix-vector multiplications
(right) Matlab execution time

Dynamical systems for sparse recovery

Analog vector-matrix-multiplyMotivation(

•  Analog(Vector0
Matrix(Multiplier(

(
!
!

–  Limited!accuracy!
–  Limited!dynamic!range!

!

[Schlo'mann+et+al.+2012]+ 7+

•  Digital(Multiply0and0
Accumulate(

!
!
!

–  Small!time!constant!
–  Low!power!consumption!

!

Dynamical systems for sparse recovery

There are simple systems of nonlinear differential equations that settle to
the solution of

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

or more generally

min
x

λ

N∑

n=1

C(x[n]) +
1

2
‖Φx− y‖22

The Locally Competitive Algorithm (LCA):

τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦTy

x(t) = Tλ(u(t))

is a neurologically-inspired (Rozell et al 08) system which settles to the
solutions of the above

Locally competitive algorithm

Cost function

V (x) = λ
∑

n

C(xn) +
1

2
‖Φx− y‖22 τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦTy

xn(t) = Tλ(un(t))

un

C(un)

un

xn = T�(un)

���

�
dC

dx
(u) = u � x

Key questions

�T
1 y T�(·)

u2(t) T�(·)

u1(t)

�T
2 y

T�(·)�T
Ny uN (t) xN (t)

x2(t)

x1(t)
�h�1,�2ix2(t)

�h�N ,�2ix2(t)

y

x(0)

x⇤

min
x
�
X

n

C(xn) +
1

2
k�x � yk2

2

Uniform convergence (general)

Convergence properties/speed (general)

Convergence speed for sparse recovery via `1 minimization

LCA convergence

x(t)

Assumptions

1 u− x ∈ λ∂C(x)

2 x = Tλ(u) =

{
0 |u| ≤ λ
f(u) |u| > λ

3 Tλ(·) is odd and continuous,
f ′(u) > 0, f(u) < u

4 f(·) is subanalytic

5 f ′(u) ≤ α

LCA convergence

Global asymptotic convergence:

If 1–5 hold above, then the LCA is
globally asymptotically convergent:

x(t)→ x∗, u(t)→ u∗, as t→∞

where x∗ is a critical point of the func-
tional.

Convergence: support is recovered in finite time

If the LCA converges to a fixed point
u∗ such that

|uγ | ≥ λ+ r, and |uγ | ≤ λ− r

for all γ ∈ Γ∗c, then the support of x∗

is recovered in finite time

of switches/sparsity

Φ = [DCT I]

M = 256, N = 512

Convergence: exponential (of a sort)

Suppose we have

the conditions for global convergence (with f ′(u) ≤ α)

energy preservation for every point we visit:

(1− δ)‖x̃(t)‖22 ≤ ‖Φx̃(t)‖22 ≤ (1 + δ)‖x̃(t)‖22 ∀t,

where x̃(t) = x(t)− x∗, and αd < 1

then the LCA converges exponentially to a unique fixed point:

‖u(t)− u∗‖2 ≤ κ0 e
−(1−αδ)t/τ

Efficient activation for `1

If Φ a “random compressed sensing matrix” and

M ≥ Const · S log(N/S)

then for reasonably small values of λ and starting from rest

|Γ(t)| ≤ 2|Γ∗|

Similar results for OMP/ROMP, CoSAMP, etc. in CS literature

Iterative Soft Thresholding with a Dynamic Input

Iterative soft thresholding (ISTA)

Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

using the simple iteration:

x(`+ 1) = Tλ

[
x(`) + η

(
ΦT(y −Φx(`))

)]
,

where Tλ = soft thresholding, η = stepsize.

One of the earliest sparse recovery algorithms (Daubechies et al ’04)

Basis for many competitive first-order methods for min-`1
(GPSR, SPARSA, Twist, etc.)

ISTA convergence

Observe
y = Φx∗ + ε, ‖ε‖2 ≤ σ, x∗ is k-sparse.

If Φ satisfies the k-RIP and λ
√
k ≥ c1‖x∗‖+ c2σ, then

‖x(`)− x∗‖2 ≤ C0κ
` + E∗, E∗ ≤ C1

(
λ
√
k + σ

)

(Bredies et al ’08, Zhang ’09)

ISTA with a dynamic input

We observe
y(t) = Φx∗(t) + ε(t)

x∗ is k sparse, ‖ε(t)‖2 ≤ σ, ‖ẋ∗(t)‖2 ≤ µ
The input changes at each step, so we are constantly “chasing” the
solution

x(t)

x⇤(t)

ISTA tracking results

Static: (Bredies et al ’08, Zhang ’09)

‖x(`)− x∗‖2 ≤ C0κ
` + E∗,

where E∗ . λ
√
k + σ

Dynamic: (Balavoine, R, Rozell, ’14)

‖x(t)− x∗‖2 ≤ C̃0κ̃
t + E∗ + C̃1 µ

where ‖ẋ∗(t)‖2 ≤ µ.

Dynamic ISTA: Simulations

Simulations+
videos+

42#

Dynamic ISTA: Simulations
Simulations+

44"

DCS-AMP: Ziniel et al ’10
RWL1-DF/BPDN-DF: Charles et al ’13

Other techniques: Sejdinovic et al ’10, Angelosante et al ’10, Vaswani ’08

References

M. Asif and J. Romberg, “Dynamic updating for l1 minimization,” IEEE Journal
on Special Topics in Signal Processing, April 2010.

M. Asif and J. Romberg, “Fast and accurate algorithms for re-weighted `1-norm
minimization,” IEEE Transactions on Signal Processing, 2013.

M. Asif and J. Romberg, “Sparse recovery of streaming signals using `1
homotopy,” IEEE Transactions on Signal Processing, 2014.

A. Balavoine, J. Romberg, and C. Rozell, “Convergence and Rate Analysis of
Neural Networks for Sparse Approximation,” IEEE Transactions on Neural
Networks and Learning Systems, September 2012.

A. Balavoine, J. Romberg, and C. Rozell, “Convergence Speed of a Dynamical
System for Sparse Recovery,” to appear in IEEE Transactions on Signal
Processing, 2013.

A. Balavoine, C. Rozell, and J. Romberg, “Iterative and continuous
soft-thresholding with a dynamic input,” submitted to IEEE Transactions on Signal
Processing, May 2014.

http://users.ece.gatech.edu/~justin/Publications.html

http://users.ece.gatech.edu/~justin/Publications.html

