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Goal: a dynamical framework for sparse recovery

Given y and ®, solve
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Goal: a dynamical framework for sparse recovery

We want to move from:

Given y and ®, solve
. 1
min Allz|, + 5[|®z — y3
T 2

to

min ¢, [




Agenda

We will look at dynamical reconstruction in two different contexts:

@ Fast updating of solutions of ¢; optimization programs

M. Salman Asif

e Systems of nonlinear differential equations that solve ¢; (and related)
optimization programs, implemented as continuous-time neural nets

Aurele Balavoine Chris Rozell



Classical: Recursive least-squares

@ System model: Yy [4)) €T
y = Px

@ ® has full column rank

@ x is arbitrary _—

@ Least-squares estimate:

min |y — @z} = &= (®7®) '@y



Classical: Recursive least-squares

@ Sequential measurement:

HRE

6 ]
@ Compute new estimate using rank-1 update:
21 = (2@ +¢9") (@Y + ¢ w)
= 30+ K1 (w — ¢ xp)
where
Ki=(2'®) 'g(1+¢"(@"®) o)

@ With the previous inverse in hand, the update has the cost of a

few matrix-vector multiplies



Classical: The Kalman filter

@ Linear dynamical system for state evolution and measurement:

Yy, = Py + €
T = Fyxy + dy
I 0 0 0 ] -F()ZL'O-

®& 0 0 O . Y1
~F, I 0 o0 wl 0
0 & 0 0 ; — | v
0 -F, I 0 3 0
0 0 &; 0 Ys

@ As time marches on, we add both rows and columns.
@ Least-squares problem:

min Y (04| ®e@e — yll3 + Aellwr — Frorze1]3)
t

x1,L2,...



Classical: The Kalman filter

@ Linear dynamical system for state evolution and measurement:

Yy = Py + €
T = Fyxy +dy

@ Least-squares problem:
min Z (oel| @i — yill5 + Al — Froyai1|3)
T1,T2,e

@ Again, we can use low-rank updating to solve this recursively:

VU = Fki
K1 = (FuPyF) + D& (81 (FrPyFy, + T)®)  + 1)

Zpperr = Yk + K1 (Y1 — Prr1vk)

Pro =0 Ky 1 ®p1)(FpPLFL +1)



Optimality conditions for BPDN

) 1
min Wl + ;|2 — yl|3
x 2

e Conditions for «* (supported on I'*) to be a solution:

o) (Px* —y) = W[y, 9lzl] yel”
|6 (2 —y)| < Wy,7] yerr

where z[y] = sign(z[y])

@ Derived simply by computing the subgradient of the functional above



Example: time-varying sparse signal

@ Initial measurements. Observe
Yy, = P + e
@ Initial reconstruction. Solve

. 1
min Ay + 5[z - y,3



Example: time-varying sparse signal

@ Initial measurements. Observe
Yy, = P + e
@ Initial reconstruction. Solve
. 1 9
min Alz[1 + 5 [|®z -y 3
z 2
@ A new set of measurements arrives:
Yy = P2 + e

@ Reconstruct again using £1-min:

) 1
min Allz(1 + ;|| @2 — 3
x 2



Example: time-varying sparse signal

@ Initial measurements. Observe
Yy, = P + e
@ Initial reconstruction. Solve
1
. 2
min Alz[1 + 5 [|®z -y 3
z 2
@ A new set of measurements arrives:
Yy = P2 + e
@ Reconstruct again using £1-min:
. 1 9
min Allzfl + S [[ @z — |3

@ We can gradually move from the first solution to the second solution
using homotopy

. 1
min Az} + §||<I’5L’ — (1= )y, — eyyll3

Take e from 0 — 1



Example: time-varying sparse signal

1
min ||zl + §H<I>a: — (1 =€) Ygq — eyneWH%, take € from 0 — 1

@ Path from old solution to new solution is piecewise linear
@ Optimality conditions for fixed e:
‘I’F(‘I):B - (1 - E)yold - 6ynew) = *)‘Sign rr
”QFC((I):B - (1 - 6)yold - 6ynew)HOO <A

I' = active support

e Update direction:

Ox — _((I)II(I)F>71(yold - ynew) onI'
0 off I



Path from old solution to new

I' = support of current solution.
Move in this direction

O — {_(QF@F)I(yold - ynew) onI’
0

off T"
until support changes, or one of these constraints is violated:

|63 (B(x + 0) — (1 — €)Yoiq — Ynew)| <A forall y €I°

///71@2
/

/ ’
/
P J

X1



‘Sparse signal example, with update. n=1024, m=512, T=m/5, k = [0, T/20]

Sparse innovations
&
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Blocks Pcw.
Piecewise constant signal [adapted from WaveLab] po |\/ Piecewise polynomial signal (cubic) [adapted from Wavelab]
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Zoom i for Haar wavelet coefficients Zoomin for wavelet coefficients (using Daubs)
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Numerical experiments: time-varying sparse signals

. LASSO
. DynamicX* GPSR-BB FPC AS
Signal type homotopy —

(nProdAtA, CPU) ("ProdAtA, CPU) (nProdAtA, CPU) | (nProdAtA, CPU)
N =1024
M =512 (23.72,0.132) (235, 0.924) (104.5,0.18) | (148.65, 0.177)
T=m/5,k ~T/20 S T o R
Values = +/- 1
Blocks (2.7, 0.028) (76.8, 0.490) (17, 0.133) (53.5, 0.196)
Pcw. Poly. (13.83,0.151) | (150.2, 1.096) | (26.05,0.212) | (66.89, 0.25)
House slices (26.2,0.011) (53.4,0.019) | (92.24,0.012) | (90.9, 0.036)

7 =0.01| ATy 0o

nProdAtA: roughly the avg. no. of matrix vector products with A and AT
CPU: average cputime to solve

[Asif and R. 2009]




Other updates

. 1
min Wl + - [|®2 - yl|3
x 2

W = weights (diagonal, positive)

Using similar ideas, we can dynamically update the solution when

@ the underlying signal changes slightly,
e we add/remove measurements,
@ the weights changes,

But none of these are really “predict and update” ...



A general, flexible homotopy framework

We want to solve 1
min [|Wel|y + o[z — yl3

o Initial guess/prediction: v
@ Solve 1
min [|Well + ;@2 — yl3+ (1 - Ju'x
fore: 0 — 1.
o Taking
u=-Wz—-®T (v —1y)

for some z € J(||v||1) makes v optimal for e = 0



Moving from the warm-start to the solution

. 1
min [We + of|®z -yl + (1 - u'a

The optimality conditions are

&L (®r —y)+ (1 —€)u=—Wsignzr
) (2 —y) + (1 — )u| < W[y,9]

We move in direction

ur onT
ox =
0 on I'¢

until a component shrinks to zero or a constraint is violated, yielding new I'



Streaming sparse recovery

Observations: Yy, =Pz + e

Representation: x[n] = Z ap ke Upk1]
D,k

Measurements Measurement matrices Signal Error LOT Signal  LOT representation bases LOT
z windows coefficients
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Streaming sparse recovery

Iteratively reconstruct the signal over a sliding (active) interval,
form w from your prediction, then take € : 0 — 1 in

1= = N
min [|Werl|y + 2| @Ta — g3+ (1 - u'e

where ¥, § account for edge effects

Overlapping system matrix Sparse  Error Divide the system into two parts
L yvectcvr




Streaming signal recovery: Simulation

Original signal (zoom in) Reconstruction error (R=4)
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time index (p) time index (p)
Time—frequency LOT coefficients Reconstruction error (LOT coefficients)
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(Top-left) Mishmash signal (zoomed in for first 2560 samples.
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients




Streaming signal recovery: Simulation
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(right) Matlab execution time

(left) SER at different R from +1 random measurements in 35 db noise
(middle) Count for matrix-vector multiplications




Streaming signal recovery: Dynamic signal

Observation/evolution model:

Y, = Py + €
Tip1 = Fyxy + d;

We solve

. 1 1
min Y~ [Wiol1 + 5|1 8:%r0y — yyll3 + S| Fe1 ¥ 10q 1 — T3
o = 2 2

(formulation similar to Vaswani 08, Carmi et al 09, Angelosante et al 09, Zainel at al 10, Charles et al 11)

using

. 1, - = - 1, - = -
min [Wal, + 5| 8%a — gl + 5| F¥a - gl3 + (1 - Ju’a



Dynamic signal: Simulation

Qriginal signal examples Reconstruction

error

time index (n)
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time index (p) time index (p)
Recenstructed signal p Compari: between L1 and LS
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(Top-left) Piece-Regular signal (shifted copies) in image

(Top-right) Error in the reconstruction at R=N/M = 4.

(Bottom-left) Reconstructed signal at R=4.

(Bottom-right) Comparison of SER for the L1-regularized and the L2-regularized
problems




Dynamic signal: Simulation
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(right) Matlab execution time

(left) SER at different R from +1 random measurements in 35 db noise
(middle) Count for matrix-vector multiplications




Dynamical systems for sparse recovery



Analog vector-matrix-multiply

 Digital Multiply-and- < AnalogVector-
Accumulate Matrix Multlpller

Hq J'—HHL IHHL L—HHL
R
FE |

— Small time constant — Limited accuracy

E;E;

cQ
7

c

l—%

E;

— Low power consumption — Limited dynamic range



Dynamical systems for sparse recovery

There are simple systems of nonlinear differential equations that settle to
the solution of

. 1 2
min Al + 5“‘1’35 —yll2

or more generally

N
] 1
min A E C(x[n])+§H‘I>w—yH§
n=1

The Locally Competitive Algorithm (LCA):

ru(t) = —u(t) — (®T® —Dx(t) + 2Ty
z(t) = Th(u(t))

is a neurologically-inspired (Rozell et al 08) system which settles to the
solutions of the above



Locally competitive algorithm
Cost function

V(g) =AY C(z,) + %II% —y|2 mEt; = —12(15)(—))(@% ~Dzx(t) + @y
n Ty (t) = T (un(t




Key questions

. 1
min A Can) + 5[ @2 — yl3

oy =G @—{ B0 =)

e Uniform convergence (general)
e Convergence properties/speed (general)

@ Convergence speed for sparse recovery via £1 minimization



LCA convergence

Assumptions
Q u—x e \C(x)

SV (R
0 @ =Nhiv {f(U) uf > A

@ T)\(-) is odd and continuous,

f'(u) >0, f(u) <u

@ f(-) is subanalytic

Q f(u)<a



LCA convergence

0.2t

Global asymptotic convergence:

-0.4

-0.6

If 1-5 hold above, then the LCA is -
globally asymptotically convergent:

z(t) > x*, u(t) > u", ast— o0

1.4

where x* is a critical point of the func-
tional.

0.8

-1.2

u137(t)



Convergence: support is recovered in finite time

If the LCA converges to a fixed point # of switches/sparsity

u* such that

luy| > X+,

for all v € I'*¢, then the support of x* < 0045
is recovered in finite time

and |uy| < A—r

threshold

[ L% y
A il a3 s R 20 4gpar8ityeg 80 100
ey ] —
& = [DCT 1]

M =256, N =512

32



Convergence: exponential (of a sort)

Suppose we have
@ the conditions for global convergence (with f/(u) < )

@ energy preservation for every point we visit:
L-9lz®l; < [®x@®)]3 < Q+d)lz@®)]3 vt
where Z(t) = (t) — «*, and ad < 1

then the LCA converges exponentially to a unique fixed point:

Hu(t) o u*”2 < Ko 67(17(15)7&/7



Efficient activation for ¢;
If ® a “random compressed sensing matrix" and
M > Const - Slog(N/S)
then for reasonably small values of A\ and starting from rest

QIR

sparsity S

Similar results for OMP/ROMP, CoSAMP, etc. in CS literature



Iterative Soft Thresholding with a Dynamic Input



lterative soft thresholding (ISTA)

Solve )
min A|z|, + || @z — y|3
x 2

using the simple iteration:

x(l+1)="T) [m(ﬁ) +n (@T(y — @m(ﬁ)))] ,
where T = soft thresholding, n = stepsize.

@ One of the earliest sparse recovery algorithms (Daubechies et al '04)

@ Basis for many competitive first-order methods for min-¢;
(GPSR, SPARSA, Twist, etc.)



ISTA convergence

Observe
y=®x.+e |€||la<o, x.isk-sparse.

If ® satisfies the k-RIP and Ak > ¢;||x.|| + c20, then
z(0) — 2*||]s < Cor’ + By, E. <C (A\/E+ g)

(Bredies et al '08, Zhang '09)



ISTA with a dynamic input

We observe
y(t) = Px.(t) + €(t)
2. is k sparse, [le(t)]2 < o, [l (t)]l2 <

The input changes at each step, so we are constantly “chasing” the
solution




ISTA tracking results

Static: (Bredies et al '08, Zhang '09)
lz(£) — 2*|l2 < Cor” + Ex,

where F, < MWk +o

Dynamic: (Balavoine, R, Rozell, '14)
|2 (t) — x*||]2 < Coi' + By + C1

where ||Z.(t)]|2 < p.



Dynamic ISTA: Simulations

videos

Signal:

X(t) is 128 x 128
X(t) = Ya(t)

¥ is a wavelet basis.

Measurements:
y(t) = ®X(t) + e(t)
® is a subsampled
noiselet transform.




Dynamic ISTA: Simulations

SpaRSA  ——ISTA (P=1, 1=1) .
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DCS-AMP: Ziniel et al '10
RWL1-DF/BPDN-DF: Charles et al '13

Other techniques: Sejdinovic et al '10, Angelosante et al 10, Vaswani '08
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