

Dynamic ℓ_1 Reconstruction

Justin Romberg, Georgia Tech ECE NMI, IISc, Bangalore, India February 22, 2015

Goal: a dynamical framework for sparse recovery

Given y and Φ , solve

 $\min_{\boldsymbol{x}} \ \lambda \|\boldsymbol{x}\|_1 + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y}\|_2^2$

Goal: a dynamical framework for sparse recovery

We want to move from:

Given y and Φ , solve

$$\min_{\boldsymbol{x}} \ \lambda \|\boldsymbol{x}\|_1 + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

to

Agenda

We will look at dynamical reconstruction in two different contexts:

• Fast updating of solutions of ℓ_1 optimization programs

• Systems of nonlinear differential equations that solve ℓ_1 (and related) optimization programs, implemented as continuous-time neural nets

Aurèle Balavoine

Chris Rozell

Classical: Recursive least-squares

 $y = \Phi x$

- Φ has full column rank
- ullet x is arbitrary

$$\min \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}\|_2^2 \implies \hat{\boldsymbol{x}} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

Classical: Recursive least-squares

• Sequential measurement:

$$egin{bmatrix} oldsymbol{y} \\ w \end{bmatrix} = egin{bmatrix} oldsymbol{\Phi} \\ oldsymbol{\phi}^{ ext{T}} \end{bmatrix} oldsymbol{x}$$

• Compute new estimate using rank-1 update:

$$\hat{\boldsymbol{x}}_1 = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \boldsymbol{\phi} \boldsymbol{\phi}^{\mathrm{T}})^{-1} (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} + \boldsymbol{\phi} \cdot \boldsymbol{w}) = \hat{\boldsymbol{x}}_0 + K_1 (\boldsymbol{w} - \boldsymbol{\phi}^{\mathrm{T}} \boldsymbol{x}_0)$$

where

$$K_1 = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\phi} (1 + \boldsymbol{\phi}^{\mathrm{T}} (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\phi})^{-1}$$

• With the previous inverse in hand, the update has the cost of a *few matrix-vector multiplies*

Classical: The Kalman filter

• Linear dynamical system for state evolution and measurement:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

- As time marches on, we add both rows and columns.
- Least-squares problem:

$$\min_{\bm{x}_1, \bm{x}_2, ...} \sum_t \left(\sigma_t \| \bm{\Phi}_t \bm{x}_t - \bm{y}_t \|_2^2 + \lambda_t \| \bm{x}_t - \bm{F}_{t-1} \bm{x}_{t-1} \|_2^2 \right)$$

Classical: The Kalman filter

• Linear dynamical system for state evolution and measurement:

$$oldsymbol{y}_t = oldsymbol{\Phi}_t x_t + oldsymbol{e}_t \ oldsymbol{x}_{t+1} = oldsymbol{F}_t oldsymbol{x}_t + oldsymbol{d}_t$$

• Least-squares problem:

$$\min_{m{x}_1,m{x}_2,...}\sum_t \left(\sigma_t \|m{\Phi}_tm{x}_t - m{y}_t\|_2^2 + \lambda_t \|m{x}_t - m{F}_{t-1}m{x}_{t-1}\|_2^2
ight)$$

• Again, we can use low-rank updating to solve this recursively:

$$\boldsymbol{v}_{k} = \boldsymbol{F}_{k} \hat{\boldsymbol{x}}$$
$$\boldsymbol{K}_{k+1} = (\boldsymbol{F}_{k} \boldsymbol{P}_{k} \boldsymbol{F}_{k}^{\mathrm{T}} + \mathbf{I}) \boldsymbol{\Phi}_{k+1}^{\mathrm{T}} (\boldsymbol{\Phi}_{k+1} (\boldsymbol{F}_{k} \boldsymbol{P}_{k} \boldsymbol{F}_{k}^{\mathrm{T}} + \mathbf{I}) \boldsymbol{\Phi}_{k+1}^{\mathrm{T}} + \mathbf{I})^{-1}$$
$$\hat{\boldsymbol{x}}_{k+1|k+1} = \boldsymbol{v}_{k} + \boldsymbol{K}_{k+1} (\boldsymbol{y}_{k+1} - \boldsymbol{\Phi}_{k+1} \boldsymbol{v}_{k})$$

$$\boldsymbol{P}_{k+1} = (\mathbf{I} - \boldsymbol{K}_{k+1} \boldsymbol{\Phi}_{k+1}) (\boldsymbol{F}_k \boldsymbol{P}_k \boldsymbol{F}_k^{\mathrm{T}} + \mathbf{I})$$

Optimality conditions for BPDN

$$\min_{\bm{x}} \|\bm{W}\bm{x}\|_1 + \frac{1}{2}\|\bm{\Phi}\bm{x} - \bm{y}\|_2^2$$

• Conditions for x^* (supported on Γ^*) to be a solution:

$$egin{aligned} oldsymbol{\phi}^{\mathrm{T}}_{\gamma}(oldsymbol{\Phi}oldsymbol{x}^{*}-oldsymbol{y}) &= -W[\gamma,\gamma]z[\gamma] \qquad \gamma \in \Gamma^{*} \ |oldsymbol{\phi}^{\mathrm{T}}_{\gamma}(oldsymbol{\Phi}oldsymbol{x}^{*}-oldsymbol{y})| &\leq W[\gamma,\gamma] \qquad \gamma \in \Gamma^{*c} \end{aligned}$$

where $z[\gamma] = \operatorname{sign}(x[\gamma])$

• Derived simply by computing the subgradient of the functional above

• Initial measurements. Observe

$$oldsymbol{y}_1 = oldsymbol{\Phi} oldsymbol{x}_1 + oldsymbol{e}_1$$

• Initial reconstruction. Solve

$$\min_{\boldsymbol{x}} \ \lambda \|\boldsymbol{x}\|_1 + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y}_1\|_2^2$$

• Initial measurements. Observe

$$\boldsymbol{y}_1 = \boldsymbol{\Phi} \boldsymbol{x}_1 + \boldsymbol{e}_1$$

• Initial reconstruction. Solve

$$\min_{\boldsymbol{x}} \ \lambda \|\boldsymbol{x}\|_1 + rac{1}{2} \|\boldsymbol{\Phi} \boldsymbol{x} - \boldsymbol{y}_1\|_2^2$$

• A new set of measurements arrives:

$$oldsymbol{y}_2 = oldsymbol{\Phi} oldsymbol{x}_2 + oldsymbol{e}_2$$

• Reconstruct again using ℓ_1 -min:

$$\min_{\bm{x}} \ \lambda \|\bm{x}\|_1 + \frac{1}{2} \|\bm{\Phi}\bm{x} - \bm{y}_2\|_2^2$$

• Initial measurements. Observe

$$\boldsymbol{y}_1 = \boldsymbol{\Phi} \boldsymbol{x}_1 + \boldsymbol{e}_1$$

• Initial reconstruction. Solve

$$\min_{\bm{x}} \ \lambda \|\bm{x}\|_1 + \frac{1}{2} \|\bm{\Phi}\bm{x} - \bm{y}_1\|_2^2$$

• A new set of measurements arrives:

$$oldsymbol{y}_2 = oldsymbol{\Phi} oldsymbol{x}_2 + oldsymbol{e}_2$$

• Reconstruct again using ℓ_1 -min:

$$\min_{\bm{x}} \ \lambda \|\bm{x}\|_1 + \frac{1}{2} \|\bm{\Phi}\bm{x} - \bm{y}_2\|_2^2$$

 We can gradually move from the first solution to the second solution using *homotopy*

min
$$\lambda \|\boldsymbol{x}\|_1 + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - (1-\epsilon)\boldsymbol{y}_1 - \epsilon \boldsymbol{y}_2\|_2^2$$

Take ϵ from $0 \rightarrow 1$

min
$$\lambda \| \boldsymbol{x} \|_1 + \frac{1}{2} \| \boldsymbol{\Phi} \boldsymbol{x} - (1 - \epsilon) \boldsymbol{y}_{\text{old}} - \epsilon \boldsymbol{y}_{\text{new}} \|_2^2$$
, take ϵ from $0 \to 1$

- Path from old solution to new solution is *piecewise linear*
- Optimality conditions for fixed ϵ :

$$\begin{split} \boldsymbol{\Phi}_{\Gamma}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{x} - (1-\epsilon)\boldsymbol{y}_{\mathrm{old}} - \epsilon\boldsymbol{y}_{\mathrm{new}}) &= -\lambda \operatorname{sign} \boldsymbol{x}_{\Gamma} \\ \|\boldsymbol{\Phi}_{\Gamma^{c}}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{x} - (1-\epsilon)\boldsymbol{y}_{\mathrm{old}} - \epsilon\boldsymbol{y}_{\mathrm{new}})\|_{\infty} < \lambda \end{split}$$

- $\Gamma = \operatorname{active \ support}$
- Update direction:

$$\partial \boldsymbol{x} = egin{cases} -(\boldsymbol{\Phi}_{\Gamma}^{\mathrm{T}}\boldsymbol{\Phi}_{\Gamma})^{-1}(\boldsymbol{y}_{\mathrm{old}}-\boldsymbol{y}_{\mathrm{new}}) & ext{on } \Gamma \ \boldsymbol{0} & ext{off } \Gamma \end{cases}$$

Path from old solution to new

 $\Gamma = {\rm support} ~{\rm of}$ current solution. Move in this direction

$$\partial \boldsymbol{x} = egin{cases} -(\boldsymbol{\Phi}_{\Gamma}^{\mathrm{T}} \boldsymbol{\Phi}_{\Gamma})^{-1} (\boldsymbol{y}_{\mathrm{old}} - \boldsymbol{y}_{\mathrm{new}}) & ext{on } \Gamma \ \boldsymbol{0} & ext{off } \Gamma \end{cases}$$

until support changes, or one of these constraints is violated:

$$\left| \boldsymbol{\phi}_{\gamma}^{\mathrm{T}}(\boldsymbol{\Phi}(\boldsymbol{x} + \epsilon \partial \boldsymbol{x}) - (1 - \epsilon) \boldsymbol{y}_{\mathrm{old}} - \epsilon \boldsymbol{y}_{\mathrm{new}}) \right| < \lambda \quad \text{for all } \gamma \in \Gamma^{c}$$

Numerical experiments: time-varying sparse signals

Signal type	DynamicX* (nProdAtA, CPU)	LASSO homotopy (nProdAtA, CPU)	GPSR-BB (nProdAtA, CPU)	FPC_AS (nProdAtA, CPU)
N = 1024 M = 512 T = m/5, k ~ T/20 Values = +/- 1	(23.72, 0.132)	(235, <mark>0.924</mark>)	(104.5, <mark>0.18</mark>)	(148.65, <mark>0.177</mark>)
Blocks	(2.7, 0.028)	(76.8, 0.490)	(17, 0.133)	(53.5, 0.196)
Pcw. Poly.	(13.83, 0.151)	(150.2, 1.096)	(26.05, 0.212)	(66.89, 0.25)
House slices	(26.2, 0.011)	(53.4, 0.019)	(92.24, 0.012)	(90.9, <mark>0.036</mark>)

 $\tau = 0.01 \|A^T y\|_\infty$

nProdAtA: roughly the avg. no. of matrix vector products with A and A^T CPU: average cputime to solve

[Asif and R. 2009]

$$\min_{\bm{x}} \| \bm{W} \bm{x} \|_1 + \frac{1}{2} \| \bm{\Phi} \bm{x} - \bm{y} \|_2^2$$

 $oldsymbol{W}=$ weights (diagonal, positive)

Using similar ideas, we can dynamically update the solution when

- the underlying signal changes slightly,
- we add/remove measurements,
- the weights changes,

But none of these are really "predict and update" ...

A general, flexible homotopy framework

We want to solve

$$\min_{\bm{x}} \ \|\bm{W}\bm{x}\|_1 + \frac{1}{2}\|\bm{\Phi}\bm{x} - \bm{y}\|_2^2$$

ullet Initial guess/prediction: v

• Solve

$$\min_{x} \|Wx\|_{1} + \frac{1}{2} \|\Phi x - y\|_{2}^{2} + (1 - \epsilon)u^{T}x$$
for $\epsilon : 0 \to 1$.
• Taking

$$oldsymbol{u} = -oldsymbol{W}oldsymbol{z} - oldsymbol{\Phi}^{\mathrm{T}}(oldsymbol{\Phi}oldsymbol{v} - oldsymbol{y})$$

for some $oldsymbol{z}\in\partial(\|oldsymbol{v}\|_1)$ makes $oldsymbol{v}$ optimal for $\epsilon=0$

Moving from the warm-start to the solution

$$\min_{\bm{x}} \|\bm{W}\bm{x}\|_1 + \frac{1}{2}\|\bm{\Phi}\bm{x} - \bm{y}\|_2^2 + (1-\epsilon)\bm{u}^{\mathrm{T}}\bm{x}$$

The optimality conditions are

$$\begin{aligned} \boldsymbol{\Phi}_{\Gamma}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{x}-\boldsymbol{y}) + (1-\epsilon)\boldsymbol{u} &= -W\operatorname{sign}\boldsymbol{x}_{\Gamma}\\ \left|\boldsymbol{\phi}_{\gamma}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{x}-\boldsymbol{y}) + (1-\epsilon)\boldsymbol{u}\right| \leq W[\gamma,\gamma] \end{aligned}$$

We move in direction

$$\partial oldsymbol{x} = egin{cases} oldsymbol{u}_{\Gamma} & ext{on } \Gamma \ oldsymbol{0} & ext{on } \Gamma^c \end{cases}$$

until a component shrinks to zero or a constraint is violated, yielding new Γ

Streaming sparse recovery

Observations: $m{y}_t = m{\Phi}_t m{x}_t + m{e}_t$ Representation: $x[n] = \sum_{p,k} lpha_{p,k} \psi_{p,k}[n]$

Streaming sparse recovery

Iteratively reconstruct the signal over a sliding (active) interval, form u from your prediction, then take $\epsilon:0\to 1$ in

$$\min_{\boldsymbol{\alpha}} \|\boldsymbol{W}\boldsymbol{\alpha}\|_1 + \frac{1}{2} \|\bar{\boldsymbol{\Phi}}\tilde{\boldsymbol{\Psi}}\boldsymbol{\alpha} - \tilde{\boldsymbol{y}}\|_2^2 + (1-\epsilon)\boldsymbol{u}^{\mathrm{T}}\boldsymbol{\alpha}$$

where $ilde{oldsymbol{\Psi}}, ilde{oldsymbol{y}}$ account for edge effects

Streaming signal recovery: Simulation

(Top-left) Mishmash signal (zoomed in for first 2560 samples.
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients

Streaming signal recovery: Simulation

(left) SER at different R from ±1 random measurements in 35 db noise
 (middle) Count for matrix-vector multiplications
 (right) Matlab execution time

Streaming signal recovery: Dynamic signal

Observation/evolution model:

$$oldsymbol{y}_t = oldsymbol{\Phi}_t oldsymbol{x}_t + oldsymbol{e}_t \ oldsymbol{x}_{t+1} = oldsymbol{F}_t oldsymbol{x}_t + oldsymbol{d}_t$$

We solve

$$\min_{\boldsymbol{\alpha}} \sum_{t} \|\boldsymbol{W}_t \boldsymbol{\alpha}_t\|_1 + \frac{1}{2} \|\boldsymbol{\Phi}_t \boldsymbol{\Psi}_t \boldsymbol{\alpha}_t - \boldsymbol{y}_t\|_2^2 + \frac{1}{2} \|\boldsymbol{F}_{t-1} \boldsymbol{\Psi}_{t-1} \boldsymbol{\alpha}_{t-1} - \boldsymbol{\Psi}_t \boldsymbol{\alpha}_t\|_2^2$$

(formulation similar to Vaswani 08, Carmi et al 09, Angelosante et al 09, Zainel at al 10, Charles et al 11) USING

$$\min_{\boldsymbol{\alpha}} \|\boldsymbol{W}\boldsymbol{\alpha}\|_1 + \frac{1}{2} \|\bar{\boldsymbol{\Phi}}\tilde{\boldsymbol{\Psi}}\boldsymbol{\alpha} - \tilde{\boldsymbol{y}}\|_2^2 + \frac{1}{2} \|\bar{\boldsymbol{F}}\tilde{\boldsymbol{\Psi}}\boldsymbol{\alpha} - \tilde{\boldsymbol{q}}\|_2^2 + (1-\epsilon)\boldsymbol{u}^{\mathrm{T}}\boldsymbol{\alpha}$$

Dynamic signal: Simulation

(Top-left) Piece-Regular signal (shifted copies) in image (Top-right) Error in the reconstruction at R=N/M = 4. (Bottom-left) Reconstructed signal at R=4. (Bottom-right) Comparison of SER for the L1-regularized and the L2-regularized problems

Dynamic signal: Simulation

(left) SER at different R from ±1 random measurements in 35 db noise(middle) Count for matrix-vector multiplications(right) Matlab execution time

Dynamical systems for sparse recovery

Analog vector-matrix-multiply

 Digital Multiply-and-Accumulate

- Small time constant
- Low power consumption

 Analog Vector-Matrix Multiplier

- Limited accuracy
- Limited dynamic range

Dynamical systems for sparse recovery

There are simple systems of nonlinear differential equations that settle to the solution of

$$\min_{\boldsymbol{x}} \ \lambda \|\boldsymbol{x}\|_1 + rac{1}{2} \|\boldsymbol{\Phi} \boldsymbol{x} - \boldsymbol{y}\|_2^2$$

or more generally

$$\min_{\boldsymbol{x}} \lambda \sum_{n=1}^{N} C(\boldsymbol{x}[n]) + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}$$

The Locally Competitive Algorithm (LCA):

$$egin{aligned} & au \dot{oldsymbol{u}}(t) = -oldsymbol{u}(t) - (oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} - \mathbf{I})oldsymbol{x}(t) + oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y} \ & oldsymbol{x}(t) = T_{\lambda}(oldsymbol{u}(t)) \end{aligned}$$

is a neurologically-inspired (Rozell et al 08) system which settles to the solutions of the above

Locally competitive algorithm

Cost function

$$V(\boldsymbol{x}) = \lambda \sum_{n} C(x_{n}) + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} \quad \tau \dot{\boldsymbol{u}}(t) = -\boldsymbol{u}(t) - (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} - \mathbf{I})\boldsymbol{x}(t) + \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$
$$x_{n}(t) = T_{\lambda}(u_{n}(t))$$

Key questions

- Uniform convergence (general)
- Convergence properties/speed (general)
- Convergence speed for sparse recovery via ℓ_1 minimization

LCA convergence

Assumptions

 $u - x \in \lambda \partial C(x)$

- $\label{eq:constraint} \begin{tabular}{ll} \bullet & T_\lambda(\cdot) \mbox{ is odd and continuous,} \\ & f'(u) > 0, \ f(u) < u \end{tabular}$
- $\textcircled{\textbf{0}} f(\cdot) \text{ is subanalytic}$

 $\ \, {\mathfrak S} \ \, f'(u) \leq \alpha$

LCA convergence

Global asymptotic convergence:

If 1–5 hold above, then the LCA is $\frac{e}{3}$ -0.8 globally asymptotically convergent:

$$oldsymbol{x}(t) o oldsymbol{x}^st, \ oldsymbol{u}(t) o oldsymbol{u}^st,$$
 as $t o \infty$

where x^* is a critical point of the functional.

Convergence: support is recovered in finite time

If the LCA converges to a fixed point u^* such that $|u_{\gamma}| \geq \lambda + r$, and $|u_{\gamma}| \leq \lambda - r$ for all $\gamma \in \Gamma^{*c}$, then the *support* of x^* is recovered in *finite time*

of switches/sparsity 0.06F 32 0.055 0.05 10 v 0.045 0.04 0.035 3 0.03 1 0.025 0.02 n 20 60 80 100 40 sparsity S $\Phi = \begin{bmatrix} DCT & I \end{bmatrix}$ M = 256, N = 512

Convergence: exponential (of a sort)

Suppose we have

- the conditions for global convergence (with $f'(u) \leq \alpha$)
- energy preservation for every point we visit:

$$(1-\delta)\|\tilde{\boldsymbol{x}}(t)\|_{2}^{2} \leq \|\boldsymbol{\Phi}\tilde{\boldsymbol{x}}(t)\|_{2}^{2} \leq (1+\delta)\|\tilde{\boldsymbol{x}}(t)\|_{2}^{2} \quad \forall t,$$

where
$$ilde{m{x}}(t) = m{x}(t) - m{x}^*$$
, and $lpha d < 1$

then the LCA converges exponentially to a unique fixed point:

$$\|\boldsymbol{u}(t) - \boldsymbol{u}^*\|_2 \leq \kappa_0 e^{-(1-\alpha\delta)t/\tau}$$

Efficient activation for ℓ_1

If Φ a "random compressed sensing matrix" and

 $M \geq \text{Const} \cdot S \log(N/S)$

then for reasonably small values of $\boldsymbol{\lambda}$ and starting from rest

 $|\Gamma(t)| \le 2|\Gamma^*|$

Similar results for OMP/ROMP, CoSAMP, etc. in CS literature

Iterative Soft Thresholding with a Dynamic Input

Iterative soft thresholding (ISTA)

Solve

$$\min_{\boldsymbol{x}} \ \lambda \|\boldsymbol{x}\|_1 + \frac{1}{2} \|\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

using the simple iteration:

$$\boldsymbol{x}(\ell+1) = \mathrm{T}_{\lambda} \left[\boldsymbol{x}(\ell) + \eta \left(\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{x}(\ell)) \right) \right],$$

where $T_{\lambda} = \text{soft thresholding}, \eta = \text{stepsize}.$

- One of the earliest sparse recovery algorithms (Daubechies et al '04)
- Basis for many competitive first-order methods for min-l₁ (GPSR, SPARSA, Twist, etc.)

Observe

$$oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x}_* + oldsymbol{\epsilon}, \quad \|oldsymbol{\epsilon}\|_2 \leq \sigma, \quad oldsymbol{x}_* ext{ is } k ext{-sparse.}$$

If ${f \Phi}$ satisfies the k-RIP and $\lambda\sqrt{k}\geq c_1\|{m x}_*\|+c_2\sigma$, then

$$\|\boldsymbol{x}(\ell) - \boldsymbol{x}^*\|_2 \le C_0 \kappa^\ell + E_*, \quad E_* \le C_1 \left(\lambda \sqrt{k} + \sigma\right)$$

(Bredies et al '08, Zhang '09)

ISTA with a dynamic input

We observe

$$\boldsymbol{y}(t) = \boldsymbol{\Phi} \boldsymbol{x}_*(t) + \boldsymbol{\epsilon}(t)$$

 $oldsymbol{x}_*$ is k sparse, $\|oldsymbol{\epsilon}(t)\|_2 \leq \sigma$, $\|oldsymbol{\dot{x}}_*(t)\|_2 \leq \mu$

The input changes at each step, so we are constantly "chasing" the solution

ISTA tracking results

Static:

(Bredies et al '08, Zhang '09)

$$\| {\bm x}(\ell) - {\bm x}^* \|_2 \leq C_0 \kappa^\ell + E_*,$$
 where $E_* \lesssim \lambda \sqrt{k} + \sigma$

Dynamic:

(Balavoine, R, Rozell, '14)

$$\|\boldsymbol{x}(t) - \boldsymbol{x}^*\|_2 \le \tilde{C}_0 \tilde{\kappa}^t + E_* + \tilde{C}_1 \mu$$

where $\|\dot{x}_{*}(t)\|_{2} \leq \mu$.

Dynamic ISTA: Simulations

videos

Signal: X(t) is 128×128 $X(t) = \Psi a(t)$ Ψ is a wavelet basis.

Measurements: $y(t) = \Phi X(t) + \epsilon(t)$ Φ is a subsampled noiselet transform.

Dynamic ISTA: Simulations

DCS-AMP: Ziniel et al '10 RWL1-DF/BPDN-DF: Charles et al '13 Other techniques: Sejdinovic et al '10, Angelosante et al '10, Vaswani '08

References

- M. Asif and J. Romberg, "Dynamic updating for 11 minimization," IEEE Journal on Special Topics in Signal Processing, April 2010.
- M. Asif and J. Romberg, "Fast and accurate algorithms for re-weighted ℓ₁-norm minimization," IEEE Transactions on Signal Processing, 2013.
- M. Asif and J. Romberg, "Sparse recovery of streaming signals using ℓ_1 homotopy," IEEE Transactions on Signal Processing, 2014.
- A. Balavoine, J. Romberg, and C. Rozell, "Convergence and Rate Analysis of Neural Networks for Sparse Approximation," IEEE Transactions on Neural Networks and Learning Systems, September 2012.
- A. Balavoine, J. Romberg, and C. Rozell, "Convergence Speed of a Dynamical System for Sparse Recovery," to appear in IEEE Transactions on Signal Processing, 2013.
- A. Balavoine, C. Rozell, and J. Romberg, "Iterative and continuous soft-thresholding with a dynamic input," submitted to IEEE Transactions on Signal Processing, May 2014.

http://users.ece.gatech.edu/~justin/Publications.html