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Goal: a dynamical framework for sparse recovery
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Agenda

We will look at dynamical reconstruction in two different contexts:

Fast updating of solutions of `1 optimization programs

M. Salman Asif

Systems of nonlinear differential equations that solve `1 (and related)
optimization programs, implemented as continuous-time neural nets

Aurèle Balavoine Chris Rozell



Classical: Recursive least-squares

System model:

y = Φx

Φ has full column rank

x is arbitrary

Motivation: dynamic updating in LS

y = ©x
© xy

• System model:

minimize k©x¡ yk2 ! x0 = (©
T©)¡1©Ty

• LS estimate

  is full rank

 x is arbitrary

=

• Updates for a time-varying signal with the same 
mainly incurs a one-time cost of factorization. 
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Least-squares estimate:

min ‖y −Φx‖22 =⇒ x̂ = (ΦTΦ)−1ΦTy



Classical: Recursive least-squares

Sequential measurement:

[
y
w

]
=

[
Φ

φT

]
x

Recursive updates

• Sequential measurements:

w

© xy

·
y
w

¸
=

·
©
Á

¸
x

Á

=

• Recursive LS 

x1 = (©
T©+ ÁTÁ)¡1(©Ty + ÁTw)

= x0 +K1(w¡ Áx0)
K1 = (©

T©)¡1ÁT (1+Á(©T©)¡1ÁT )

Rank one update
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Compute new estimate using rank-1 update:

x̂1 = (ΦTΦ + φφT )−1(ΦTy + φ · w)

= x̂0 +K1(w − φTx0)

where
K1 = (ΦTΦ)−1φ(1 + φT(ΦTΦ)−1φ)−1

With the previous inverse in hand, the update has the cost of a
few matrix-vector multiplies



Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

yt = Φtxt + et

xt+1 = F txt + dt



I 0 0 0 · · ·
Φ1 0 0 0 · · ·
−F 1 I 0 0 · · ·

0 Φ2 0 0 · · ·
0 −F 2 I 0 · · ·
0 0 Φ3 0 · · ·
...

...
...

. . .
...







x1

x2

x3
...


 =




F 0x0

y1

0
y2

0
y3
...




As time marches on, we add both rows and columns.

Least-squares problem:

min
x1,x2,...

∑

t

(
σt‖Φtxt − yt‖22 + λt‖xt − F t−1xt−1‖22

)



Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

yt = Φtxt + et

xt+1 = F txt + dt

Least-squares problem:

min
x1,x2,...

∑

t

(
σt‖Φtxt − yt‖22 + λt‖xt − F t−1xt−1‖22

)

Again, we can use low-rank updating to solve this recursively:

vk = F kx̂

Kk+1 = (F kP kF
T
k + I)ΦT

k+1(Φk+1(F kP kF
T
k + I)ΦT

k+1 + I)−1

x̂k+1|k+1 = vk +Kk+1(yk+1 −Φk+1vk)

P k+1 = (I−Kk+1Φk+1)(F kP kF
T
k + I)



Optimality conditions for BPDN

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

Conditions for x∗ (supported on Γ∗) to be a solution:

φT
γ (Φx∗ − y) = −W [γ, γ]z[γ] γ ∈ Γ∗

|φT
γ (Φx∗ − y)| ≤W [γ, γ] γ ∈ Γ∗c

where z[γ] = sign(x[γ])

Derived simply by computing the subgradient of the functional above



Example: time-varying sparse signal

Initial measurements. Observe

y1 = Φx1 + e1

Initial reconstruction. Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y1‖22

A new set of measurements arrives:

y2 = Φx2 + e2

Reconstruct again using `1-min:

min
x

λ‖x‖1 +
1

2
‖Φx− y2‖22

We can gradually move from the first solution to the second solution
using homotopy

min λ‖x‖1 +
1

2
‖Φx− (1− ε)y1 − εy2‖22

Take ε from 0→ 1
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Example: time-varying sparse signal

min λ‖x‖1 +
1

2
‖Φx− (1− ε)yold − εynew‖22, take ε from 0→ 1

Path from old solution to new solution is piecewise linear

Optimality conditions for fixed ε:

ΦT
Γ (Φx− (1− ε)yold − εynew) = −λ signxΓ

‖ΦT
Γc(Φx− (1− ε)yold − εynew)‖∞ < λ

Γ = active support

Update direction:

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ



Path from old solution to new

Γ = support of current solution.
Move in this direction

∂x =

{
−(ΦT

ΓΦΓ)−1(yold − ynew) on Γ

0 off Γ

until support changes, or one of these constraints is violated:
∣∣φT

γ (Φ(x+ ε∂x)− (1− ε)yold − εynew)
∣∣ < λ for all γ ∈ Γc

Time-varying signals

y1 =©x1+ e1• System model:

minimize ¿kxk1 +
1

2
k©x¡ y2k22• New `1 problem:
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x1! x2 ) y1! y2• Signal varies:  
“Sparse  innovations”

minimize ¿kxk1 +
1

2
k©x¡ y1k22• `1 problem:

minimize ¿kxk1 +
1

2
k©x¡ (1¡ ²)y1 ¡ ²y2k22

Homotopy parameter: 0 ! 1

bx1

bx2
• Path from old solution to new 

solution is piecewise linear and 
it is parameterized by ²: 0 ! 1



Blocks Pcw. poly

House
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Sparse innovations



Numerical experiments: time-varying sparse signals
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Other updates

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

W = weights (diagonal, positive)

Using similar ideas, we can dynamically update the solution when

the underlying signal changes slightly,

we add/remove measurements,

the weights changes,

But none of these are really “predict and update” ...



A general, flexible homotopy framework

We want to solve

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22

Initial guess/prediction: v

Solve

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22 + (1− ε)uTx

for ε : 0→ 1.

Taking
u = −Wz −ΦT(Φv − y)

for some z ∈ ∂(‖v‖1) makes v optimal for ε = 0



Moving from the warm-start to the solution

min
x
‖Wx‖1 +

1

2
‖Φx− y‖22 + (1− ε)uTx

The optimality conditions are

ΦT
Γ (Φx− y) + (1− ε)u = −W signxΓ∣∣φT
γ (Φx− y) + (1− ε)u

∣∣ ≤W [γ, γ]

We move in direction

∂x =

{
uΓ on Γ

0 on Γc

until a component shrinks to zero or a constraint is violated, yielding new Γ



Streaming sparse recovery

Observations: yt = Φtxt + et

Representation: x[n] =
∑

p,k

αp,kψp,k[n]

Sparse recovery: streaming system

• Signal observations:     

• Sparse representation:     
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Streaming sparse recovery

Iteratively reconstruct the signal over a sliding (active) interval,
form u from your prediction, then take ε : 0→ 1 in

min
α
‖Wα‖1 +

1

2
‖Φ̄Ψ̃α− ỹ‖22 + (1− ε)uTα

where Ψ̃, ỹ account for edge effects

Sparse recovery: streaming system

• Iteratively estimate the signal over a sliding (active) interval: 
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Overlapping system matrix Sparse
vector

Error

minimize kW®k1 +
1

2
k¹©~ª®¡ ~yk22

minimize kW®k1 +
1

2
k¹©~ª®¡ ~yk22 + (1¡ ²)uT®

Desired

Homotopy

Divide the system into two parts



Streaming signal recovery: Simulation
Streaming signal recovery - Results
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(Top-left) Mishmash signal (zoomed in for first 2560 samples. 
(Top-right)  Error in the reconstruction at R=N/M = 4. 
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients



Streaming signal recovery: SimulationStreaming signal recovery - Results
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(left) SER at different R from ±1 random measurements in 35 db noise 
(middle)  Count for matrix-vector multiplications
(right) Matlab execution time



Streaming signal recovery: Dynamic signal

Observation/evolution model:

yt = Φtxt + et

xt+1 = F txt + dt

We solve

min
α

∑

t

‖W tαt‖1 +
1

2
‖ΦtΨtαt − yt‖22 +

1

2
‖F t−1Ψt−1αt−1 −Ψtαt‖22

(formulation similar to Vaswani 08, Carmi et al 09, Angelosante et al 09, Zainel at al 10, Charles et al 11)

using

min
α
‖Wα‖1 +

1

2
‖Φ̄Ψ̃α− ỹ‖22 +

1

2
‖F̄ Ψ̃α− q̃‖22 + (1− ε)uTα



Dynamic signal: SimulationDynamic signal recovery - Results
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(Top-left) Piece-Regular signal (shifted copies) in image
(Top-right)  Error in the reconstruction at R=N/M = 4. 
(Bottom-left) Reconstructed signal at R=4. 
(Bottom-right) Comparison of SER for the L1-regularized and the L2-regularized 
problems



Dynamic signal: Simulation
Dynamic signal recovery - Results
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(left) SER at different R from ±1 random measurements in 35 db noise 
(middle)  Count for matrix-vector multiplications
(right) Matlab execution time



Dynamical systems for sparse recovery



Analog vector-matrix-multiplyMotivation(

•  Analog(Vector0
Matrix(Multiplier(

(
!
!

–  Limited!accuracy!
–  Limited!dynamic!range!

!

[Schlo'mann+et+al.+2012]+ 7+

•  Digital(Multiply0and0
Accumulate(

!
!
!

–  Small!time!constant!
–  Low!power!consumption!

!



Dynamical systems for sparse recovery

There are simple systems of nonlinear differential equations that settle to
the solution of

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

or more generally

min
x

λ

N∑

n=1

C(x[n]) +
1

2
‖Φx− y‖22

The Locally Competitive Algorithm (LCA):

τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦTy

x(t) = Tλ(u(t))

is a neurologically-inspired (Rozell et al 08) system which settles to the
solutions of the above



Locally competitive algorithm

Cost function

V (x) = λ
∑

n

C(xn) +
1

2
‖Φx− y‖22 τ u̇(t) = −u(t)− (ΦTΦ− I)x(t) + ΦTy

xn(t) = Tλ(un(t))

un

C(un)

un

xn = T�(un)

���

�
dC

dx
(u) = u � x



Key questions

�T
1 y T�(·)

u2(t) T�(·)

u1(t)

�T
2 y

T�(·)�T
Ny uN (t) xN (t)

x2(t)

x1(t)
�h�1,�2ix2(t)

�h�N ,�2ix2(t)

y

x(0)

x⇤

min
x
�
X

n

C(xn) +
1

2
k�x � yk2

2

Uniform convergence (general)

Convergence properties/speed (general)

Convergence speed for sparse recovery via `1 minimization



LCA convergence

x(t)

Assumptions

1 u− x ∈ λ∂C(x)

2 x = Tλ(u) =

{
0 |u| ≤ λ
f(u) |u| > λ

3 Tλ(·) is odd and continuous,
f ′(u) > 0, f(u) < u

4 f(·) is subanalytic

5 f ′(u) ≤ α



LCA convergence

Global asymptotic convergence:

If 1–5 hold above, then the LCA is
globally asymptotically convergent:

x(t)→ x∗, u(t)→ u∗, as t→∞

where x∗ is a critical point of the func-
tional.



Convergence: support is recovered in finite time

If the LCA converges to a fixed point
u∗ such that

|uγ | ≥ λ+ r, and |uγ | ≤ λ− r

for all γ ∈ Γ∗c, then the support of x∗

is recovered in finite time

# of switches/sparsity

Φ = [DCT I]

M = 256, N = 512



Convergence: exponential (of a sort)

Suppose we have

the conditions for global convergence (with f ′(u) ≤ α)

energy preservation for every point we visit:

(1− δ)‖x̃(t)‖22 ≤ ‖Φx̃(t)‖22 ≤ (1 + δ)‖x̃(t)‖22 ∀t,

where x̃(t) = x(t)− x∗, and αd < 1

then the LCA converges exponentially to a unique fixed point:

‖u(t)− u∗‖2 ≤ κ0 e
−(1−αδ)t/τ



Efficient activation for `1

If Φ a “random compressed sensing matrix” and

M ≥ Const · S log(N/S)

then for reasonably small values of λ and starting from rest

|Γ(t)| ≤ 2|Γ∗|

Similar results for OMP/ROMP, CoSAMP, etc. in CS literature



Iterative Soft Thresholding with a Dynamic Input



Iterative soft thresholding (ISTA)

Solve

min
x

λ‖x‖1 +
1

2
‖Φx− y‖22

using the simple iteration:

x(`+ 1) = Tλ

[
x(`) + η

(
ΦT(y −Φx(`))

)]
,

where Tλ = soft thresholding, η = stepsize.

One of the earliest sparse recovery algorithms (Daubechies et al ’04)

Basis for many competitive first-order methods for min-`1
(GPSR, SPARSA, Twist, etc.)



ISTA convergence

Observe
y = Φx∗ + ε, ‖ε‖2 ≤ σ, x∗ is k-sparse.

If Φ satisfies the k-RIP and λ
√
k ≥ c1‖x∗‖+ c2σ, then

‖x(`)− x∗‖2 ≤ C0κ
` + E∗, E∗ ≤ C1

(
λ
√
k + σ

)

(Bredies et al ’08, Zhang ’09)



ISTA with a dynamic input

We observe
y(t) = Φx∗(t) + ε(t)

x∗ is k sparse, ‖ε(t)‖2 ≤ σ, ‖ẋ∗(t)‖2 ≤ µ
The input changes at each step, so we are constantly “chasing” the
solution

x(t)

x⇤(t)



ISTA tracking results

Static: (Bredies et al ’08, Zhang ’09)

‖x(`)− x∗‖2 ≤ C0κ
` + E∗,

where E∗ . λ
√
k + σ

Dynamic: (Balavoine, R, Rozell, ’14)

‖x(t)− x∗‖2 ≤ C̃0κ̃
t + E∗ + C̃1 µ

where ‖ẋ∗(t)‖2 ≤ µ.



Dynamic ISTA: Simulations

Simulations+
videos+

42#



Dynamic ISTA: Simulations
Simulations+
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DCS-AMP: Ziniel et al ’10
RWL1-DF/BPDN-DF: Charles et al ’13

Other techniques: Sejdinovic et al ’10, Angelosante et al ’10, Vaswani ’08
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